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Thin Fe and Al foils were ramp compressed over several to tens of ns timescales to study the time-

dependence associated with the onset of plastic flow. Peak stress states of 15-200 GPa were achieved 

through a laser ramp-compression technique in which the strain rate can be varied, shot-to-shot, in the 

106-108 s-1 range. In our analysis we find, a strong correlation between the peak elastic precursor stress, 

  E, and the strain rate at the onset of plastic flow,   Ý p . Our data, combined with data from other 

dynamic compression platforms, reveal a sharp increase in   E at high strain rates, consistent with a 

transition from dislocation flow dominated by thermal activation and athermal effects to a phonon drag 

regime. In bcc Fe, this change in deformation response occurs at Ý p ~2×106 s-1 and E   E~ 1.3 GPa. In 

fcc Al, phonon drag dominates above   Ý p~103 s-1 and   E~ 0.03 GPa where   E scales as   
Ý p 0.43

. By

contrast, the Al alloy 6061-T6 exhibits a relatively weak dependency of   E with   Ý p up to strain rates of 

~107 s-1.
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I. Introduction

Understanding the nature and time-dependence of material deformation at high strain rates is an 

important goal in condensed matter physics. Under dynamic loading, the rate of plastic strain,   Ý p , is 

determined by the flow of dislocations and is a complex function of time, sample purity, temperature, 

internal stresses, microstructure and loading rate. Deformation at high strain rates is typically 

characterized in split-Hopkinson pressure bar (  Ý p< ~5x105 s-1) or in shock compression (  Ý p< ~106 s-1) 

experiments where, for a known input, the bulk response of a sample is evaluated through analysis of 

transmitted wave profiles. For low stress shocks, an elastic wave emerges with a time-dependent stress, 

  E, which runs ahead of the plastic wave. Time-dependent plasticity is typically inferred in shock 

experiments by fitting measured   E-distance data with a phenomenological dislocation kinetics model 

[1-3]. In this paper, we employ a laser-driven ramp wave loading (RWL) technique in which the strain 

rate of compression is variable in the ~106-108 s-1 range. Our data shows that independent of sample 

thickness,   E, is well correlated with the instantaneous strain rate at the onset of plastic flow,   Ý p for 

both shock- and ramp-wave experiments. At low strain rates   E increases linearly with   ln
Ý p ; 

characteristic of thermally-activated dislocation flow. At high strain rates there is a transition to a 

  E  Ý p n scaling consistent with phonon drag mediated dislocation flow. 

The   E(  Ý p) onset for phonon drag dominated dislocation flow in bcc metals has not been 

observed experimentally. Recent measurements on bcc metals, V and Ta, using x-ray radiography to 

determine the growth of Rayleigh-Taylor instabilities inferred, via recourse to a multi-scale model, 

phonon drag mediated plasticity at   Ý p~107 s-1 [4]. Similar experiments and analysis techniques, also on V 

and Ta, at   Ý p ~105 s-1 were consistent with plasticity in the thermal activation regime [5]. Kolsky bar 

experiments and pressure-shear experiments (tilted flyer plate impacts) on V up to strain rates of 105 s-1 

[6] and Ta up to 5×105 s-1 [7], have also been interpreted as falling in the thermal activation regime. 

Based on these limited data, for bcc metals, the dominant mechanism limiting plastic flow appears to be 

thermal activation up to ~5×105 s-1, and phonon drag at 107 s-1 and above. Up until now there has not

been a single technique that can vary the strain rate over a large enough interval in the correct high-rate 

regime to map out this transition. The new high- Ý  data for bcc Fe presented in this paper is consistent 
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with high strain rate change to a phonon drag regime at   E~ 1.3 GPa and   Ý p~2×106 s-1. At higher strain 

rates   E scales linearly with  Ý p .

In fcc metals, such as Al, the Peierls force is small and phonon drag is the dominant mechanism 

determining dislocation motion even at low   E(  Ý p). We present new high strain rate (~103-1010 s-1) 

ramp and shock compression data on pure aluminum, which reveal that in the high- phonon drag 

regime   E scales as   
Ý p 0.43

. We show that for a commonly used alloy of aluminum (Al 6061-T6) the high 

strain rate   E(  Ý p) data are consistent with a delayed onset of phonon drag mediated deformation due 

to impurities impeding dislocation flow. To our knowledge, the RWL data presented here represent the 

highest strain rate measurements on bcc and fcc metals reported to date.

II. Experimental Setup

The RWL data reported here was obtained on the Janus and Omega laser facilities. The target design for 

the Janus experiments consists of a 100m polyimide [C22H10N2O5] foil followed by a 200m vacuum gap 

and an Fe/sapphire target (Fig. 1). The polyimide is irradiated for 4ns by the 1mm-square spatially-planar 

527nm Janus laser (300 J), generating an ablatively-driven shock. After shock-breakout from the rear 

surface, the polyimide rarefies across the vacuum gap, monotonically loads-up against the Fe sample, 

and launches a temporally-smooth ramp-compression wave [10]. By changing the vacuum gap size and 

laser intensity it is possible to vary the compression rate by a factor of ~40. Under these conditions, peak 

stress states of 15-50 GPa are obtained over several to tens of ns. Due to the planar, inertially confined 

nature of the ramp drive our samples are in a state of uniaxial strain. Here, stress and strain are defined 

as = xx and dd. For the experiments on the Janus laser, high purity (99.995%) Fe was deposited 

in 10-36 m layers onto a sapphire [001] window under conditions that yielded a grain size of ~5 m in 

the stress loading direction and ~1 m in plane. The Fe bcc crystal structure was orientated along the 

[110] axis in the growth (pressure loading) direction with random orientation in-plane and was 

measured to be fully dense (7.87 g/cc) to within an accuracy of 0.6%. For the experiments on the Omega 

laser 12% Br-doped plastic foils [C4H3Br] were used instead of polyimide and the target was driven over 

a 2mm diameter by x-radiation from a Au hohlraum [11]. Here, 20-56 m thick single crystal [100] Fe 

samples were glued onto sapphire windows with an estimated glue thickness of ~1m. In both 

experimental setups, the time history of the transmitted compression wave was recorded by measuring 

the Fe/sapphire interface velocity ui(t) with a line-imaging velocity interferometer system for any 
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reflector (VISAR) with a velocity accuracy of ~10 m/s and a streak camera temporal resolution of ~0.05 

ns [12]. Sapphire was chosen because it has a similar mechanical impedance to Fe thereby minimizing 

wave reflections at the Fe-sapphire interface. For some experiments Fe/sapphire samples were replaced 

with Al/LiF samples. The high spatial planarity associated with the x-ray drive from the Omega laser 

meant different thicknesses of Al could be compressed with a common compression history to peak 

stress states of 200 GPa [13].

A typical ui(t) profile for a ramp loaded polycrystalline Fe sample is shown in Fig. 1. Here, a three 

wave structure emerges at the Fe/sapphire interface: an elastic wave with a peak velocity of uE, a plastic 

wave P1 with a peak velocity u, which is followed by a pronounced velocity pullback after the peak, 

and a subsequent plastic wave P2. This transformation from the smoothly rising load profile to the 

structured transmitted wave profile is understood by considering the target dynamics in Lagrangian co-

ordinates as discussed in ref. [10]. The initial one-dimensional elastic deformation is characterized by 

stress propagation at the longitudinal sound speed (~5.1 km/s). Immediately behind the elastic front, as 

plasticity initiates, stress waves propagate at the lower bulk sound speed (~4.4 km/s) which results in 

wave separation as a function of thickness. For stress levels above 13 GPa the →(bcc → hcp) phase 

transformation may initiate causing a drop in the Lagrangian sound speed, CL, as the material evolves 

into the new -phase. Due to the time-dependence associated with the transformation, at u there is 

a rapid velocity pullback in the u(t) record due to stress relaxation caused by an evolving volume 

collapse into the denser -phase. The velocities associated with peak elastic stress and the onset of the 

 phase transformation have a strong dependence on the loading strain rate. Within this paper we 

focus solely on the time dependence associated with the initial onset of plasticity for bcc Fe and fcc Al. 

These results are presented in the following sections.

III. Review of Experimental Data

A. bcc Iron

The velocity of the Fe/sapphire interface may be related to an equivalent longitudinal stress, x, and 

particle velocity, u, with standard impedance matching techniques assuming an elastic EOS for sapphire 

(  x = 44.2u + 4.7u2 [14]) and, for compression below uE, an elastic EOS for Fe (x = 43.67u + 11.88u2�

[15]) with   E and u in GPa and km/s, respectively. For compression above uE, an EOS for -Fe was used, 
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which was determined from a fit to shock Hugoniot data reported by Arnold [16] (   phase =0.25 +36.93u

+6.78u2). In our analysis we define a longitudinal strain rate associated with initial plastic flow as,

   
  
Ý p 

dlnV
dt


du /dt

CL

 Ý p
uE

2uE
, (1)

where CL is the Lagrangian sound speed. In the analysis presented below, is defined at the base of the P1 

wave over the velocity interval uE to 2×uE (Fig 1) and represents the strain rate at the onset of inelastic 

deformation. Based on recent sound speed measurements on 99.8% pure Fe, CL is assumed constant 

over this velocity interval at 4.4 km/s [17].

Shown in Fig. 2 is the peak longitudinal elastic stress plotted as a function of sample thickness, 

for our laser RWL data and those previously published from other dynamic compression experiments

(both ramp and shock). For each data set used, the reported initial microstructures and sample purities

from the original references are listed. The error bars for the Janus laser ramp data (red circles) on 

polycrystalline Fe represent the uncertainty in the determination of uE due to instrument resolution and 

non-planarities within the drive. For comparable loading drives on the Omega laser, the [100] single 

crystal Fe samples (purple open diamond symbols) exhibit   E up to five times greater than the 

equivalent measurement on polycrystalline samples. This trend is consistent with observations by 

Jensen [18] in which   E(500m) for [100] single crystal Fe was greater by a factor of ~2 over similar 

measurements on polycrystalline samples. In the same study   E(500m) was found to be comparable 

for polycrystalline Fe and Fe [210] and [110] single crystals, which suggests that the discrepancy in our 

data between polycrystalline and [100] is not due primarily to differences in the initial dislocation 

density but rather on the availability of slip planes to facilitate plasticity. In the Omega [100] data large 

velocity pullbacks were measured after the elastic precursor peak.   E(x) shown in Fig. 2 was calculated

at the precursor peak and the extent of the (negative) error bar represents the position of the symbol if 

the minimum pullback velocity were used to calculate   E(x). A similar analysis was applied to the shock 

compression data from Arnold [16, 19], Barker [20], Jensen [15], Hereil [21], Taylor [22] and Johnson 

[23] and to the ramp compression data from Jensen [18]. The   E(x) data of Bancroft [24], de Ressiguier 

[25], Ivanov [26] and Rosenburg [27] are listed as reported. In these references no u(t) profiles were 

given. The laser ramp compression data presented here represent the closest elastic stress 

measurements to the loading surface reported to date.

For polycrystalline Fe, there is a general trend of E decay as a function of distance away from 

the loading surface ranging from 5.5 GPa at 10 m to 0.6 GPa at 133mm [24]. After sufficient 
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propagation,   E asymptotes toward the steady-state yield surface or Hugoniot Elastic Limit (HEL). For 

the Janus RWL loading data and for a fixed thickness of 20m,   E varies by a factor of ~3. A similar 

scatter is observed at 50m for the [100] single crystal RWL data. The origin of this scatter may be 

understood by considering the effect of loading strain rate on the evolution of the peak elastic stress.

Figure 2 represents the instantaneous value for   E after propagation through a range of sample 

thicknesses; a data set which encompasses a wide range of loading rates. Figure 3(a) illustrates the time-

dependent evolution of   E as a function of propagation distance from the loading surface, for shock 

compression (red dashed curve) and for ramp compression (black dashed curve) experiments. Under

shock loading the material is brought to the compressed state within the rise time of the shock front 

(~10 ps). The initial deformation at the loading surface is assumed to be fully elastic and at a stress state 

given by the peak loading stress [1-3]. After a finite period, significant plastic flow behind the elastic 

front is initiated with an associated drop in the material sound speed. For moderate shock stresses, a 

two wave structure is formed with a predominantly elastic wave, travelling initially at the longitudinal 

sound speed, running ahead of a slower moving inelastic wave propagating at a stress-dependent bulk 

sound speed. Time-dependent plastic flow behind the elastic front causes the peak elastic precursor 

stress,   E, to decay as a function of propagation distance. Here, disturbances behind the elastic front 

with an associated sound speed, c, propagate in x with a velocity u + c, where u is the particle velocity 

behind the shock front. Attenuation of a shock front, propagating in x, by a release wave may be written 

as, 

        
  

DP
DX

 
(u c U)

U
p
x

       ,   (2)

where DP/DX refers to the attenuation of the peak, p/x refers to the change in slope behind the shock 

front and U is the velocity of the shock front [30, 31]. The difference (u+c)-U increases monotonically 

with the curvature of the Rankine-Hugoniot p-v curve, so equation (2) shows that shock decay is rapid 

where the thermodynamic derivative 2p/v2 is large in the shocked state and p/x is large, i.e. the 

shock is a sharp spike [31]. Consequently, close to the loading surface where stress relaxation behind 

the elastic front is strongest,  E decays most rapidly. A full description of precursor decay as given in 

equation (2) requires an understanding of the evolution of u(x) and c(x), which implies a knowledge of 

time-dependent dislocation flow. At long distances a steady wave emerges with fixed amplitude elastic 

precursor at the Hugoniot Elastic Limit (HEL) and a plastic wave rise time determined by a competition 

between the nonlinear stress-strain response and dissipative behavior [28, 29].
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While shock compression is characterized by a reduction in strain rate as a function of 

propagation distance towards a steady wave value, in ramp compression experiments the strain rate 

increases with distance from the loading surface towards an equivalent shock rise time (Fig. 3(a)). Unlike 

shock loading, for ramps   E(x=0) is not equivalent to the peak compressive stress but rather is a 

function of the interplay between loading rate and the time dependence of incipient plasticity. In order 

to investigate how the peak elastic stress in ramp compressed Fe is related to the kinetics of plastic flow, 

we apply a rate-dependent, dislocation-based continuum model of plasticity. A detailed description of 

this model may be found in Appendix A. Plotted in Fig. 3(b) is the calculated response of an Fe sample to 

dynamic loading where the peak state of compressive stress is constant but the loading rate is varied 

from 106-109 s-1. The resolved shear stress,  , versus time is derived by solving the differential equations 

describing a linear increase of applied shear stress with time and those describing time-dependent 

plasticity. As material flow is not considered, the calculations represent the onset of plasticity at the 

loading surface. This simple model shows that, at x=0,  increases linearly with time until the material 

undergoes a transition from elastic to plastic deformation at   E, where   E is found to be uniquely 

related to the loading strain rate,   Ý Load . The onset of plasticity results in shear stress relaxation; initiated 

at   E, and at a rate proportional to   E. We note that a quantitative description of  E  Ý p material 

response at a distance x’ from the loading surface is highly complex and is a convolution of the 

instantaneous material response (Fig. 3(b)) and the integrated time-dependent response from x=0x’ 

(Fig. 3(a)).   Ý p(x’) is determined by the flow of dislocations and is a complex function of time, sample 

purity, temperature, internal stresses, microstructure and loading rate. However our analysis shows a 

direct correlation between the peak elastic stress   E  and the strain rate at the onset of plastic flow 

  Ý p  at the loading surface. Away from the loading surface the attenuation of   E in x is also strongly 

correlated to time-dependent plastic flow (  Ý p), through the p/x term in eqn. 2.

In Fig. 4, we plot the instantaneous   E-  Ý p response of Fe for a range of sample thicknesses. 

Only data sets from Fig. 2 where u(t) profiles were available are represented. For the shock compression 

data of Arnold [16, 19] and Héreil [21] we use the strain rate numbers as reported. The shear stress 

measurements from Klopp [33] were converted to longitudinal stress and strain rate as described in ref. 

[34]. The data set taken as a whole represents a large range of initial Fe microstructures. The Janus RWL

samples had ~1×5 m grains while the work of Jensen [18] used single crystal Fe samples with different 

crystal orientations. Grain size dependences on   E-   Ý p data for Armco Fe in the 5×104 - 106 s-1 strain rate 

range was first reported by Arnold [16] with subsequent analysis by Armstrong [19]. The strain rate 
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dependence of   E for different grain sizes, was accounted for in terms of competition between grain-

size-dependent slip and twinning deformation responses followed by grain-size-independent shock-

induced plasticity controlled by the nucleation of deformation twins [19, 25]. The lower   E value for the 

400m grain data from Arnold [16] is explained as a consequence of twinning being the dominant 

deformation mechanism as opposed to slip deformation for the 20, 40 and 80m size grains [19].   E for 

the 400m grain samples reported by Johnson [23] is significantly higher, but this discrepancy may be 

accounted for by the higher levels of impurities within these samples. The work by Arnold suggests that 

the   E-  Ý p response is insensitive to microstructure for grain size less than ~40m.

The data in Fig. 4 shows a relative insensitivity of   E with strain rate for polycrystalline Fe over 

the strain rates range ~102-106 s-1. At   Ý p> ~2x106 s-1 there is a marked increase in   E scaling with   Ý p . A 

number of phenomenological constitutive models have been developed to describe the   Ý p relationship 

in bcc metals. A general form of these models predicts a     ln Ý p  dependency in the thermally-

activated regime with a transition to a     Ý p n response in the high strain rate phonon drag regime 

[8], where n < 1 suggests an increase in saturation dislocation density with increasing strain rate [32]. A 

fit to the low strain rate data, shown as the black line in Fig. 4 is represented by the following 

expression,

  E=0.06 ln(1887  Ý p) ,                                     (3)

which is consistent with a thermally-activated dislocation flow facilitating the onset of significant 

plasticity. For   Ý p > ~2×106 s-1,   E increases linearly with   Ý p . This sudden change in material response is 

consistent with high-  Ý p predictions for bcc metals where dislocation velocities become limited only by 

energy dissipation from interaction with lattice vibrations or phonon drag [35]. A fit to the high strain 

rate data, shown as the green curve in Fig. 7, is represented by the following expression,

  E=1.11+1.45x10-7   Ý p .                      (4)

The data in Fig. 4 are consistent with a change in the dislocation flow mechanism from thermally 

activated to phonon drag at   E of ~1.3 GPa and   Ý p ~ 2×106 s-1. Additional measurements by Héreil [21] 

at a strain rate of ~106 s-1 demonstrated a linear drop in   E as a function of increasing temperature; 

consistent with thermally activated dislocation flow and the conclusions reached here. Single crystal 

[100] Fe data is represented as the open diamond symbols. Here, the more limited data set suggests an 

equivalent transition to a phonon drag regime at ~106 s-1 but offset to higher levels of   E.
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Fig. 2 and 4 illustrates that for moderate strength shocks high strain rate plastic deformation 

exists only close to the loading surface. It would be expected, therefore, that (high-  E) phonon drag is 

initially the dominant mechanism limiting dislocation flow whereas after significant propagation and 

commensurate reductions in   E, thermal activation would predominate. Consequently, under shock 

compression, a measurement of   E versus   Ý p , as a function of distance would reveal the   E state at 

which phonon drag initiates. In the ramp compression experiments reported here, an analogous 

experimental measurement is made. Here, for Fe, the target thickness is held fixed at 10-30 m and the 

strain rate is varied in the ~106-107 s-1 range. 

In our analysis we correlate the peak elastic stress with the strain rate at the onset of plastic 

flow,   Ý p . In the work of Swegle and Grady [28] it was found that, under steady wave conditions, the 

maximum strain rate within the plastic wave has a forth-power relationship to the peak shock stress, 

  Ý max Peak
4 . Remarkably, this relationship appears to be universal over all (fully dense) materials. The 

underlying physics of the 4th power law are not well understood and a number of physical mechanisms 

have been proposed [29]. There is evidence however that the physical processes defining   Ý max and the 

low stress   Ý p used here are different. As reported by Grady, a lower stress limit to the applicability of 

the 4th power law occurs when the peak flow stress approaches the yield stress. In recent work on Fe by 

Armstrong et al. [19] it was shown that the   Ý max asymptotes towards the 4th power dependency only for 

flow stresses above ~8 GPa. The low stress divergence from 4th power law behavior was accounted by 

Armstrong through a dislocation dynamics based model.

B. fcc Aluminum

In fcc metals, such as Al, the Peierls force is small and phonon drag is the dominant mechanism 

determining dislocation motion even at low    Ý p . Shown in Fig. 5 is the peak longitudinal elastic stress 

in pure Al as a function of propagation distance,   E x , for our laser ramp wave data and those 

previously published from other dynamic compression experiments. For each data set used, the listed 

initial microstructures and sample purities are taken from the original references. The error bars for the 

data taken on the Janus laser represent the uncertainty in the determination of uE, due to instrumental 

resolution and non-planarities within the drive. Here, no velocity pullback associated with the elastic 

precursor was observed. In the shock compression data from Barker [38] and the ramp compression 

data from Smith [11] where a velocity pullback was observed,   E x  represents the precursor peak and
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the extent of the (negative) error bar represents the position of the symbol if the minimum pullback

velocity was used to calculate   E x . The errors bars for Gupta [39], Winey [40] and Trivedi [41] are 

shown as reported. There is a general trend of   E decay as a function of distance away from the loading 

surface ranging from 14.5 GPa at 2 m to 0.02 GPa at 25mm. Significant scatter in the data is observed 

within 120m from the loading surface where time dependence is expected to be strongest.

The circle and square symbols represent data for ramp and shock loading, respectively. The 

symbols connected by red lines represent different sample thicknesses with identical stress loading 

history (taken on the same shot). The samples from the Janus ramp compression experiments, Smith 

[11] and those of Gupta [39] were prepared using identical source Al and e-beam deposition processes 

to yield common microstructures and purities. These data sets span sample thicknesses between ~6-

200m. Within the 26-180 m data reported by Gupta [39] there is a clear trend of   E decay with 

propagation thickness. However, we note that in the 6-30 m data reported by Smith [11],   E is 

observed to stay constant or even increase as a function of propagation thickness. As illustrated in Fig. 

3(b), under ramp compression, plasticity at x=0 initiates and at a stress level which is a function of the 

loading strain rate. Away from the loading surface the strain rate increases as a function of x, due to 

stress-strain nonlinearity, towards a value consistent with a shock wave rise time [11]. This increase in 

Ý p with x can result in higher values of measured   E(x) further away from the loading surface. Near the 

loading surface, this acts as a competing process to the expected dissipative plastic flow behind the 

elastic front and is, we suggest, an explanation for why the data of Smith [11] does not decay with 

propagation thickness. We note that the peak stress in the experiments of Smith [11] and Gupta [39] 

were 50-200 GPa and 4 GPa, respectively and, as described below the laser experiments by Smith are up 

to two orders of magnitude higher strain rate.

Also shown as an insert to Fig. 5 is the   E-x data for a commonly used alloy of Al: Al 6061-T6. 

Aluminum 6061-T6 is one of the most widely used of the 6xxx series of silicon-magnesium alloys. Its 

composition is 96-99% aluminum with 0.8-1.2% magnesium, 0.4-0.8% silicon and other minor 

constituents [46]. The -T6 designation indicates that the alloy has been solutionized and artificially aged 

to improve its mechanical properties for structural applications. The T6 hardening treatment varies by 

manufacturer but usually involves a solution treatment at 810K followed by quenching in water and 

then aging for a few hours at around 450 K. This process leads to a material with a Mg2Si precipitate 

phase evenly distributed inside the grains which act as impediments to dislocation flow. In Fig. 5,   E for 
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Al 6061-T6 increases slowly as function of decreasing propagation thickness [47]. There is a convergence 

between pure Al and Al 6061-T6 for thinner sample thicknesses (i.e higher strain rates).

Recent studies on pure Al [8], in split-Hopkinson pressure bar (SHPB) experiments, 

demonstrated a sudden increase in the flow stress above a strain rate of ~103 s-1. Measurements of the 

temperature dependence of   E at this transition   Ý p [8] and at ~ 106 s-1 (under shock compression) [9] 

were consistent with phonon drag dislocation flow. In Fig. 6, we plot   E versus the strain rate,   Ý p , in 

aluminum for a range of shock and ramp compression experiments. Only data sets from Fig. 5 where u(t) 

profiles were available are represented in Fig. 6. Here, a strong correlation in the instantaneous   E-  Ý p

response is evident from   Ý p~103-109 s-1. The data set taken as a whole represents a large range of initial 

Al microstructures. The laser ramp compression samples had ~1×5 m grains while the work of Kanel [9] 

used single crystal samples. A fit to the ramp and shock data in Fig. 6 reveal a power law dependency of 

the form,

                E=1.12x10-3 (  Ý p)0.43, (5)

which appears relatively independent on the initial sample microstructure. The power law dependence 

between   E and   Ý p , is consistent with an increase in the dislocation saturation density with strain rate

[32]. 

Shown for comparison, as insert to Fig. 6, is the strain rate dependency of Al 6061-T6. Here, 

dislocations flow through the fcc aluminum matrix readily, but get pinned when they interact with the 

precipitates. The stress must be increased in order for the dislocations to bow out and break free to 

propagate further. The critical stress is the Orowan stress, or various generalizations such as in the 

Friedel-Fleischer model. The process of dislocations breaking free from the nanoscale precipitates is 

largely an athermal mechanism rather than an activated process [53]; as a result, it is largely rate 

independent. In the plot of stress versus strain rate, this athermal process leads to a nearly constant 

stress below some threshold rate. Above the threshold, phonon drag is expected to cause the stress to 

increase with rate. For   Ý p < 5×106 s-1,   E for Al 6061-T6 is observed to be relatively insensitive to strain 

rate suggesting deformation is below the phonon drag threshold. At 5×106 s-1 the response of pure Al 

and Al 6061-T6 are consistent. A number of studies have been reported recently [11, 54] in which the 

dynamic yield strength of pure Al has been compared with that of Al 6061-T6 under ramp compression 

conditions at different strain rates. The data presented in Fig. 6 indicates that reported differences in 

dynamic strength are likely to be strongly effected by the differences in impurity levels (including 

alloying) as well strain rate effects.
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IV. Conclusions

Obtaining quantitative information on time-dependent material response at high strain rates is difficult 

due to the existence of large gradients in density, which can vary rapidly in time (several ns) and space 

(several s). Experimentally the challenges are two fold: (1) Develop an experimental technique to 

generate high strain rate conditions, (2) Develop capabilities to diagnose time-dependent material 

response. The most common technique for generating compressive strain rates < ~106 s-1 have been 

through plate impact experiments on mm-thick samples. Here the material is shock-loaded at a fixed 

strain rate of ~109 s-1 which drops as a function of propagation distance towards a finite steady-wave 

rise-time determined by time-dependent material response. The primary diagnostic for these 

experiments velocimetry in which the interfacial velocity history is recorded after the stress wave has 

traversed the sample. The result is a space- and time- integrated measurement of material response at a 

well-defined propagation distance. For a common drive, measurement of peak elastic stress versus 

propagation distance is then typically fit with phenomenological dislocation kinetics models to obtain 

information on time-dependent plasticity. These models are, in turn, derived from observations under 

quasi-static conditions. As the sample thicknesses used in flyer-plate experiments are typically ~mm in 

scale the measured strain rates are in the ~103-106 s-1 range (Fig. 4). Other techniques used infer high-  Ý p

dislocation flow employ x-ray diffraction during shock compression [57] and high resolution imaging of 

recovered shock compressed samples [58]. Atomistically high-  Ý p plasticity (> ~109 s-1) has been explored 

through molecular dynamics (MD) simulations where empirical information may then be used to 

develop analytical expressions for use within continuum modeling [32] (multi-scale modeling approach). 

Measurements within the ~106-109 s-1 strain rate range are needed to bridge the gap between 

traditional experimental techniques and ultra-high strain rate atomistic calculations. In this paper we 

presented data on bcc Fe and fcc Al in which the dependencies of strongly time-dependent plastic flow 

are measured across a strain rate range of 106-108 s-1. We use a recently developed laser ramp wave 

loading technique to compress 6-70 m thick samples while systematically varying the loading strain 

rate [17].

The E - Ý p response of a material at a distance x’ from the loading surface is a convolution of 

the instantaneous material response and the integrated time-dependent response from x=0x’. In 

SHPB experiments on fcc metals, Cu and Al, it was found that the instantaneous strain rate was

dominant over the strain rate history in determining the sudden rise of stress at high strain rates 
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characteristic of phonon drag dislocation flow. Indeed, in the analysis of VISAR traces from our data we 

find that, independent of sample thickness, there exists a strong correlation between instantaneous 

values of  E and   Ý p ; for both ramp and shock loading. For Fe we observe an increase in the peak elastic 

stress at   Ý p > ~2×106 s-1 and   E~1.3 GPa which is consistent with a transition to phonon drag 

dislocation flow. In fcc Al, within the phonon drag regime, our data reveal a power law dependence of 

  E with   
Ý p 0.43

which is consistent with an increase in the saturation density with increasing strain 

rate. The laser ramp data presented here represent some of the highest strain rates achieved within the 

laboratory. 

This work was performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore 

National Laboratory under Contract DE-AC52-07NA27344. The authors wish to thank J.R. Asay, Y.M. 

Gupta, J.M. Winey, P.B. Trivedi and H. Huang for providing VISAR velocity data, which were included in 

the figures.

Appendix A

In order to investigate how the elastic precursor is related to the kinetics of plastic flow, we have applied 

a rate-dependent, dislocation-based continuum model of plasticity (Fig 3(b)). This model relates the 

shear stress (strength) to dislocation mobilities and work hardening. A dislocation mobility law gives the 

velocity of dislocation motion to the shear stress [55]. In some cases such mobility curves have been 

calculated from first principles using molecular dynamics. Work hardening is the increase in strength 

due to entanglement of dislocations, and the strength is taken to increase as the square root of the 

dislocation density in a form due to Taylor [22]. The dislocation density evolves with the plastic flow 

through multiplication and annihilation. For sufficiently high dislocation densities, multiplication and 

annihilation cancel and the dislocation density comes to a steady state that has been termed saturation. 

This kind of model with explicit dislocation evolution is a generalization of the Gilman model [56]. 

Specifically, we use a mechanical threshold stress (MTS) form [53] developed recently for a 

multiscale model of the strength of tantalum [5]. The parameters for tantalum were derived from first 

principles through a multiscale hierarchy starting with density functional theory quantum mechanical 

calculations of bonding, and then progressing through classical molecular dynamics calculations of 
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dislocation mobilities and dislocation dynamics calculations of multiplication, saturation, and dislocation 

type partitioning (parameterized through an Orowan factor). That multiscale sequence has not been 

undertaken for iron at this point. It is a major, multi-year effort to do so.  Instead, we have taken the 

parameters for the body-centered cubic metal tantalum and scaled them for the body-centered cubic 

metal iron. Such a scaling is not expected to be quantitatively precise, but it should be qualitatively 

correct.  It provides insight into the precursor dynamics.

The model is fully specified by the following relations [5, 35]. The von Mises shear stress 

(strength) σe is the sum of work hardening and mobility contributions:

  
e  M (  ˆ )  p  (6)

where M is a Taylor factor that accounts for the orientation distribution (texture) of the polycyrstal 

grains, τα is an athermal stress, τp is the Peierls stress and τ* is the relative dislocation mobility. The 

mobility is comprised of thermal activation and phonon drag contributions:

  
   ˜ Therm

5  ˜ Drag
5 1/ 5

(7)
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(10)

where v is the dislocation velocity, c0 is the shear wave velocity and T is the temperature. The other 

quantities are parameters listed in Table 1. The work hardening is of the form

ˆ  bG  (11)

where G is the shear modulus and β is a parameter. The plastic strain rate is given by Orowan’s Law

  Ý p bv /M (12)

where ρ is the dislocation density, b is the Burgers vector length (the nearest neighbor interatomic 

spacing) and η is the Orowan factor accounting for partitioning of plastic flow between different kinds of 

dislocations. The dislocation density evolves as the material is deformed according to:

  
Ý  R 1


Sat









Ý p

(13)



15

where R is the dislocation multiplication rate and ρSat is the saturation dislocation density. The saturation 

density is taken to be a function of the strain rate:

  
Sat  0s

Ý p

Ý N
 S0











n

(14)

where apart from the saturation density and the plastic strain rate all of the quantities in this formula 

are parameters. The only pressure dependence in the model enters through the Peierls stress, which is 

taken to be a polynomial of the pressure. The parameters in the models for tantalum and vanadium 

have been derived from first principles, as explained above, and are published in Ref. [5]. The 

parameters for iron are not available in the literature, so we scale the tantalum parameters using 

dimensional analysis in the following way. The parameters αt and βt have dimensions of temperature, 

and are assumed to scale with the melt temperature. The parameters τα and τp include dimensions of 

stress and are assumed to scale with the shear modulus. The parameters b, ρ0s, and R have dimensions 

that are the length scale to different powers and that length scale is taken to be the lattice constant. The 

parameter   Ý N has a dimension of time-1 and is assumed to scale with b/c0. The parameters for iron are 

given in Table 1, as inferred from the parameters for tantalum and these scaling relations.

b 2.485 Å M 3.07

 20 MPa )0( PG 90.4 GPa

p 688 MPa  2.0

0c 3875 m/s
s0 1.5 x 1011 /m2

0
~v 10-9

N 2.23 s-1

0 2.3643
0S 650

t 623 K n 0.59

0 0.2757 R 1.3 x 1017/m2

t 1409 K  0.4

0 37.166
1 0.03075

Table 1. Parameters used in time-dependent plasticity model for Fe.
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Smith et al. – Fig. 1

Fig. 1.  Experimental setup for laser-driven ramp compression of an Fe foil. The VISAR 
records the emergence of a three wave structure at the Fe/sapphire interface: an 
Elastic Wave, a plastic wave (P1) with a peak stress associated with the onset of the 
→ phase transformation and a subsequent plastic wave (P2) within which 
transformation to the -phase occurs.   Ý p is the strain rate at the initial onset of 
plasticity and is found to be strongly correlated to the peak elastic precursor velocity,
uE. In our analysis Ý p is defined over the velocity interval uE2uE.
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Smith et al. – Fig. 2

Fig. 2.   E as a function of propagation distance from the loading surface for Fe. The red circles 
and purple open diamond symbols represent the laser driven ramp compression data on 
polycrystalline and single crystal [100] Fe samples, respectively.
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Smith et al. – Fig. 3

(a)

(b)
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Smith et al. – Fig. 4

Fig. 3(a) Ramp wave evolution at different times during compression.   

�

Ý p is the is the strain 
rate at the initial onset of plasticity and is found to be strongly correlated to   

�

E. In our analysis 

  Ý p is defined over the velocity interval uE2uE. The color scale illustrates how, in contrast to 
shock loading, for ramp compression   

�

Ý max increases as a function of distance from the loading 
surface. (b) Calculated shear stress as a function of time at the loading surface for an Fe 
sample assuming a linear ramp compression with loading strain rates,   Ý Load.   E represents the 
stress at the onset of inelastic deformation and is shown to be a function of   Ý Load.
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Smith et al. – Fig. 5

Fig. 4. Peak Elastic stress,   E, plotted against the strain rate of initial plastic deformation,   Ý p for Fe. 

The sudden increase of   E at high   Ý p is consistent with the onset of phonon drag mediated plastic 

flow for   E > ~1.3 GPa and   Ý p > ~2×106 s-1. Single crystal [100] samples are shown as the open 
diamond symbols. Here, the more limited data set suggests an equivalent transition to a phonon 
drag regime at ~106 s-1 but offset to higher levels of   E.
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Smith et al. – Fig. 6

Fig. 5.   E versus distance for >99.9% pure-Al. The circles represent ramp compression 
experiments while the squares represent shock compression. The symbols connected by red 
lines signify different thickness with common loading conditions (same shot). Also shown are 
tensile bar test on the same Al microstructure as used in the laser ramp experiments and in the 
data of Smith [11] and Gupta [39]. Insert shows   E-x data for Al 6061-T6.
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Fig. 6.  Peak elastic stress,   E, plotted against the strain rate of initial plastic deformation,   Ý p , 

for pure Al. Insert shows   E-  Ý p data for Al 6061-T6.


